1	Long term aspects of landfilling and surface disposal - lessons learned from
2	nuclear and non-nuclear decommissioning, remediation and waste management
3	
4	Rolf Sjöblom ^a , Staffan Lindskog ^b and Lale Andreas ^c
5	
6	^a Division of Waste Science and Technology, Luleå University of Technology , c/o
7	Tekedo AB, Spinnarvägen 10, SE-611 37 Nyköping, Sweden.
8	
9	^b Swedish Radiation Safety Authority, 171 16 Stockholm, Sweden.
10	
11	^c Division of Waste Science and Technology, Luleå University of Technology, SE- 971
12	87 Luleå, Sweden
13	
14	e-mail: rolf.sjoblom@tekedo.se; lale.andreas@ltu.se; staffan.lindskog@ssm.se
15	
16	* Corresponding author: Rolf Sjöblom; tel. +46 155 210415; fax. +46 8 51932027
17	
18	Abstract
19	
20	The fields of landfilling of conventional waste and that of surface disposal of nuclear
21	waste have developed quite independently and also partly out of phase with each other.
22	The paper analyses what knowledge and experience might be mutually beneficial as
23	well as what further knowledge may be needed.
24	
25	It is found that even though knowledge may exist, and information from lessons learned
26	elsewhere be available, action may be subject to considerable initiation or incubation

27 times. Legislation on financial reporting is summarized and its implications for early technical and financial planning are assessed. Prerequisites for long-term behaviour are 28 29 analysed for the waste forms as well as for the seals and covers. The rationale for using 30 natural and anthropogenic analogues is compiled, and alternative seals for landfills are 31 analysed based on this information. Lessons learned from nuclear decommissioning are 32 presented, and the difficulties encountered when the decommissioning takes place long 33 times after commissioning and operation of a facility are illuminated. Comparison is 34 made with contaminated soil in which area openly available domestic publications are 35 lass abundant in some areas. The differences between end of license and end of 36 responsibilities are clarified. 37 38 Uranium-containing waste is presented as an example. Prerequisites are presented for 39 natural uranium together with its progenies and for depleted uranium, initially without any daughters. It is found that both alternatives are associated with a number of issues to 40 41 consider, and that both call for long-term containment for conventional chemical hazard 42 and radiological hazard reasons.

43

44 Keywords: Landfilling, surface disposal, shallow land burial, long-term, leaching,

45 legislation, financing, financial reporting, prediction, natural analogues,

46 decommissioning, contaminated soil, end of license, uranium, mill tailings, Ranstad,

47 depleted uranium.

48

49 **1. Introduction and objective**

50 1.1 Introduction

Substantial efforts are presently being made on research in the areas of nuclear as well
as non-nuclear (conventional) waste management. In many respects, the prerequisites

53	and needs are different, e g with regard to nuclear criticality and reduction of the
54	potential for detriment to man and the environment by radioactive decay. In other
55	respects, and especially in the area called surface disposal in the nuclear area as well as
56	landfilling in the conventional area, the needs for knowledge and for pertinent strategies
57	with regard to long term aspects may be rather similar.
58	
59	Consequently, one would expect comprehensive co-ordination of the efforts in the two
60	areas. However, in many respects the various efforts are out of phase as well as
61	incoherent.
62	
63	For example, after more than a decade of intensive leach testing in the nuclear area,
64	(Chapman and McKinley, 1987) concluded that "the only reliable means of providing
65	data for release modelling" is to replicate disposal conditions in terms of chemical
66	environment and time, and that leaching using pure water for a short time can only be
67	used in order to "compare the overall quality of waste forms".
68	
69	Nonetheless, twelve years later, the European Union issued a (EU Directive, 1999)
70	stating that waste should be qualified for disposal according to a leach test using
71	distilled water and lasting for 24 hours. After the Swedish ban on landfilling of organic
72	matter, the most abundant waste form is probably ash from combustion and
73	incineration. The appropriate standard as well as the Swedish implementation of the
74	Directive state that the test is not applicable to materials that react with the leachant, and
75	that equilibrium conditions should be sought for in such cases. Nonetheless, the
76	accredited laboratories routinely carry out the test anyway without even making a
77	comment about it in their analysis protocols.

79	Of course, ash, and especially fly ash, age on contact with water and air, and it has
80	recently been shown (Sjöblom, 2011) that just one week of ageing - but preferably
81	longer - may give rise to an order of magnitude decrease in the leach-rates for copper,
82	lead and zinc.
83	
84	The incoherence is particularly noticeable in cases where waste is
85	• conventionally hazardous as well as radioactive, and
86	• where the level of radioactivity is low and short-lived such that surface disposal
87	/ landfilling (as opposed to geological disposal) may appear as the preferable
88	alternative
89	
90	In concordance, there is a need to compare the approaches to surface disposal and to
91	landfilling and to identify mutually beneficial knowledge and experience. Experience
92	shows that there are two areas in particular that warrant attention, namely long term
93	performance and long-term planning. Reasons for this include the following:
94	1. Comparison between allowed concentration in waste that may be deposited on a
95	landfill for non-hazardous waste according to the (EU Directive 2008) with
96	allowed leaching according to (EU Directive 1999) may give the numerical
97	result, for a 10 metres high landfill, that depletion with regard to a hazardous
98	substance may take up to a million years. (This figure is hypothetical since the
99	next glaciation is expected to appear within 100 000 years).
100	2. Planning for long-term decommissioning and remediation has proven to be
101	notoriously difficult from a financial as well as from a technical perspective
102	(Lindskog and Sjöblom, 2008, 2009).
103	

1.20bjectives and scope

106	The objective and scope of the present paper are to compare nuclear and non-nuclear
107	waste management with the aim to:
108	• identify and describe circumstances and events leading to the present differences
109	in approach between conventional and nuclear waste management
110	• identify what knowledge can be shared
111	• share some lessons learned
112	• present and discuss the example of uranium-containing waste
113	• identify areas in which further research is warranted
114	• identify pertinent strategies
115	
116	2. The significance of trends
117	Human versatility implies ability to act as individuals as well as in cohorts. Especially
118	the latter may, however, be associated with considerable initiation or incubation times.
119	Trends are by no means any monopoly of fashion design. For instance, the greenhouse
120	effect has been documented in scientific as well as in popular and well circulated
121	literature (Arrhenius, 1919) for more than 100 years, but it is only in recent years that it
122	has become a general concern.
123	
124	X-rays were discovered in the 1990's and came to wide-spread practical use in medicine
125	within only a few years. Unfortunately, high doses of ionising radiation may cause
126	cancer long after the exposure, and this was discovered decades later in a number of
127	tragic instances. Consequently, the hazards of ionising radiation were quite well known
128	when the first (anthropogenic) nuclear reactor was started in 1942. However, there was
129	essentially no experience of man-made radio-nuclides, and it took decades before their

130 implications became studied with any intensity.

131	
132	During the early years ending in the mid-70's, AB Atomenergi was responsible for a
133	rather ambitious nuclear technology development programme to which our Government
134	alone contributed around 1,55 G€(Lindskog and Sjöblom, 2008). A total of 517 reports
135	were published during the years 1956 to 1977, two of which deal with nuclear waste. A
136	shift of paradigm came with a Government enquiry in the mid1970's (Swedish
137	Government, 1976), and subsequently, the users of nuclear electricity have paid a total
138	of around 2 G€on nuclear waste research (see further below).
139	
140	Studies of the events (Lindskog and Sjöblom, 2008) show that much of the knowledge
141	base required to deal with the waste problem existed already in the 1950's, and also that
142	the Government enquiry (Swedish Government, 1976) stands the test of time
143	surprisingly well.
144	
145	Consequently, it is important to consider that time is likely to catch up on issues not
146	adequately dealt with at present, but where financing and research is warranted. The
147	findings below in the present paper support a conclusion that long-term aspects of
148	landfilling may constitute an attractive candidate in this regard.
149	
150	3. The requirements from society
151	3.1The Environmental Code
152	The general requirements from society are summarized in the Swedish Environmental
153	Code, and the following can be found in Chapter two.
154	• Take adequate protective measures and other precautions to avoid detriment to
155	health and the environment

156 • Sufficient knowledge

157	• Compliance with the Polluter Pays Principle (PPP)
158	• Use of Best Available Technology (BAT)
159	• Comply with (all other) legislation
160	
161	A first observation is that is the operator / owner / license holder that has the full and
162	undivided responsibility for protection of health and the environment. The duty of the
163	Authorities and Courts is to instigate and oversee compliance. Licenses to operate do
164	not lift any of these basic requirements.
165	
166	It should also be noted regarding PPP that the law does not indicate any upper level for
167	the costs involved, nor does it indicate any limit in time. Moreover, the responsibility is
168	a collective one among the parties involved.
169	
170	The statements apply collectively. Thus, if BAT is not sufficient for adequate protection
171	of health and the environment, then new knowledge will have to be found and
172	technology developed.
173	
174	3.2 Requirements on research and development
175	Since 1987, and under the Act on Nuclear Activities, the nuclear industry in Sweden has
176	been obligated to submit, every third year, a comprehensive programme for the research
177	and development needed for the safe management of the nuclear waste and for the
178	decommissioning of the nuclear facilities. The programmes have been reviewed by the
179	Swedish National Council for Nuclear Waste, the competent Authorities, and others,
180	and input has been provided to support completeness and quality of the knowledge base.
181	The research and development work has been conducted by the Swedish Nuclear Fuel
182	and Waste Management Company (SKB), who in March this year (2011) submitted an

application to build a final repository for spent nuclear fuel. It is presently under

184 Authority review (Dverstorp et al., 1011).

185

186 No similar legislation process for ensuring sufficiently comprehensive research has been 187 identified in the areas of landfilling and remediation of contaminated soil. It can be 188 observed, however, that the level of financing on the non-nuclear side is more than one 189 order of magnitude lower in Sweden. 190 191 3.3 Legislations on financing 192 In Sweden, the financing of the nuclear waste management as well as that of 193 decommissioning of the nuclear facilities is assured under the Nuclear Liability Act. 194 According to this Act, funds are set aside whilst the nuclear reactors and other facilities 195 are in operation in order to cover all future costs. Moreover, securities are also provided 196 in order to cover the uncertainties in the estimates. Such legislation has been in force 197 since around the late 70's. 198 199 Financing of the final environmental liabilities associated with landfills is covered under 200 the Environmental code by means of securities. 201

202 3.4 Legislation on financial reporting

203 All environmental liabilities as well as their precise levels must be reported under the

204 Swedish Annual Reports Act, which for larger enterprises refers to the International

205 Financial Reporting Standard (IFRS/IAS) issued by the International Accounting

206 Standards Board (IASB). The international reporting standard (IASB, 2010) as well as

- an ASTM standard (ASTM, 2007a) provide relatively detailed instructions as to how
- 208 the liabilities are to be evaluated. They require that exact figures be provided even for

209 complex undertakings pernaps decades into the future. But they do also include	clude the
--	-----------

210 possibility of uncertainty, in which case alternative outcomes must be identified and

211 evaluated together with their relative probability.

212

213 The penal law requires that an "essentially correct financial situation" be presented.

214 Noncompliance may lead to up to six years in prison for those responsible, see

215 (Lindskog and Sjöblom, 2009) for further detail.

216

217 **4. Long-term performance and planning**

218 4.1 The complexity of the issue and requirements on early planning

219 The requirements from society summarised in Section 3 imply that the following

220 objectives will have to be achieved:

221 1. Methods for landfilling, including installation of final covers, have to be 222 available. The installations must function during the length of time needed with 223 regard to the content of hazardous substances and acceptable leach rates to the 224 environment. This is something that the implementer will have to be able to 225 show in such a manner that it will be accepted by the authorities and the courts. 226 2. Technical as well as financial planning have to be carried out in such a way that 227 objective (1) above will be met. This must apply also in cases where the final 228 closure may lay decades ahead into the future.

229

The objectives (1) and (2) above are closely interlinked. Achievement of objective (1) presupposes that the planning according to objective (2) be sufficiently elaborate in order for such cost estimates to be made that are sufficiently precise in order to allow accumulation of adequate funding to cover all future costs during the time when the benefits of the facility in question are reaped. This frequently implies that technical

235 planning, including the associated research required, has to be made long before the

236 operations required to achieve end of responsibility status are to be carried out.

237

Thus, the two issues of long term performance and long term planning are closelyinterlinked and are therefore dealt with together in the following.

240

241 *4.2 Prerequisites for predicting long-term behaviour*

242 In general, landfilling of organic matter is prohibited in Sweden, and consequently most 243 of the waste deposited comprises oxides of metallic elements. It is frequently assumed 244 among environmental chemists that the minor elements - some of which are regarded as 245 "contaminants" - form phases in which they are major elements. It has, however, been 246 well known among inorganic chemists, mineralogists and geologists for decades that 247 this is often not the case and that the "contaminants" instead are incorporated into the 248 phases formed by the major elements in the form of solid solution. This makes them far 249 less accessible, especially after ageing, than what might be assessed using standard 250 thermodynamic calculations software. Further information on this issue can be found in 251 (Sjöblom and Noläng, 2011).

252

The kinetics aiming towards thermodynamic equilibrium are even much more difficult to estimate from theory or by semi-empirically based methods. Although there are covariations between bonding energies and rates of reactions, at least for similar cases, there exists no general correlation. For example, the activation barrier to forming and breaking of hydrogen bonds in monomethylammonium chloride decreases from about 32 to 4 kJ/mole in a phase transition while the strength of the bonding - as evidenced by infrared data - remains approximately the same. (Sjöblom, 1975)

261 Rates of reaction are frequently assumed to follow a relationship given by the 262 Arrhenius' equation. A number of conditions have to be met in order for this to be valid, 263 including that the reaction depends on only a single mechanism. Moreover, the 264 mechanism or mechanisms governing the rates may be very different for different 265 ranges of parameters. Consequently, one needs to be able to prove that the mechanisms 266 are the same if extrapolation is to be made outside the range of parameters. This is 267 typically very difficult to prove in practice. 268 269 The considerations should also include some treacherous phenomena such as stress 270 corrosion and depletion of inhibitors, in which cases little may be observed for a long 271 time after which catastrophic break downs may take place. 272 273 The present state of knowledge regarding kinetics in chemistry thus strongly indicates

that knowledge bases intended to be used for predictions on long-term behaviour should
preferably include natural and anthropogenic analogues.

276

277 4.3 Natural and anthropogenic analogues

278 Literature searches on natural and anthropogenic analogues unveils a wealth of

279 scientific papers in the area of nuclear waste, but few responses on disposal of

280 conventional waste. Only some brief points are made in the following.

281

An outline of the general strategy applied can be found in (Poinssot and Gin, 2012), see

also references therein. It is put forward that a specific approach has been progressively

284 determined by the scientific community in order to understand and describe the

- evolution of waste forms and barrier materials. The approach is labelled "long-term
- 286 *behaviour science*" and relies on a combination of experimental and modelling

287	approaches. Natural and anthropogenic analogues are essential for the identification of
288	key mechanisms as well as for benchmarking. Recommendations in this regard can be
289	found in an ASTM standard (ASTM, 2007b).
290	
291	Papers related to the Swedish nuclear waste programme include (Liu et al., 1996;
292	Smellie et al.; 1997, Smellie et al.; 1999, Bruno et al., 2002). According to the Swedish
293	nuclear waste programme, the spent fuel is to be put in composite canisters having iron
294	on the inside for mechanical strength and copper on the outside for corrosion resistance.
295	The canisters are to be put in holes in crystalline rock with bentonite clay in between.
296	
297	Some countries have policies for reprocessing of the spent nuclear fuel, and in such
298	cases the fission products are stabilised into a glass form (Poinssot and Gin, 2012).
299	Reference (Sjöblom et al., 2011a) deals with nuclear waste glass as well as with glass
300	from melting of conventional incinerator ash, and puts forward vitrified forts as an
301	anthropogenic analogue.
302	
303	Examples of nuclear waste forms and barrier materials used are shown in Table 1
304	together with the associated types of natural and anthropogenic analogues.
305	
306	Table 1.
307	
308	4.4 Landfilling
309	In Sweden, there is a ban on landfilling of organic materials. At the same time, about
310	half of our domestic waste is being incinerated with recovery of the energy (Flyhammar,
311	2011). Thus much of the waste being deposited at present comprise inorganic material.
312	

313	The long-term behaviour of a landfill depends on the combined developments in the
314	waste and in the barriers. So far, focus has been on the most immediate concerns,
315	namely emissions to air and water, but there is also a growing interest in the evolution
316	of the waste form over time, see e. g. (Brännvall, 2010) and references therein.
317	
318	Of course, it should be discussed which waste may require the most long-term
319	containment, nuclear or conventional. Nuclear waste may decay over time and thus lose
320	its potential for harming health and the environment. Contaminants in conventional
321	waste may become stabilised, especially in cases where the "matrix" is reactive such as
322	is frequently the case for ashes. It can be concluded, though, that long term containment
323	may be required in either case depending on the particular circumstances.
324	
325	It cannot generally be expected that the waste forms alone can provide the containment
326	necessary in order to protect health and the environment for the length of time required.
327	Consequently, landfills are supplied with covers and seals that are intended to provide
328	the protection required, e. g. against percolating water. A few examples may be as
329	follows (Sjöblom et al., 2011b; Rihm et al., 2009):
330	• Geomembranes are made of e. g. polyethylene or polyvinyl chloride. Presence of
331	antioxidants is frequently important for their stability, and the rate of
332	deterioration may increase considerably when the antioxidants have become
333	consumed. Stress corrosion is also an issue as well as brittle behaviour for low
334	loads over long times.
335	• <u>Geo clay liners</u> are made of two sheets of synthetic fabric with bentonite clay in-
336	between. The two sheets are joined by either needle punching or stitching. The

bentonite clay contains the mineral montmorillonite (sodium rich type) whichswells strongly on contact with water, thus forming an efficient seal. The long

	14	
339		term shear strength depends on the ageing properties of the polymer material
340		joining the two sheets. Bentonite itself is sensitive to chemicals, including salt.
341		The installations are usually sensitive to differential settlements of the
342		underlying waste. See e. g. (Brundin et al., 2001; Meer, 2007).
343	•	Natural clays can provide a considerable chemical buffer capacity, but have in
344		most cases higher hydraulic conductivity as compared to bentonite, Natural
345		clays can show variations in properties. Sources for suitable clays are scarce in
346		Sweden.
347	٠	Ashes from combustion of wood based fuels are recycled materials that may be
348		compared with natural clays in terms of chemical buffer capacity and hydraulic
349		conductivity. Details can be found in (Sjöblom and Tham, 2009). It might be
350		added that no literature has been found on the influence of salt in a landfill seal,
351		but general literature on soil suggests that the hydraulic conductivity might
352		increase if the salt is lost. The following considerations may be required in order
353		to meet the requirements on imperviousness (Tham and Andreas, 2008):
354		selection of ash (e. g. grain size distribution), additive (e. g. water), compaction
355		procedure and possible storage time.
356	•	Mixtures of ashes and activated sewage sludge constitute recycled materials and
357		may form tight seals in the short term. However, claims of long-term stability
358		have been repudiated based on anthropogenic and natural analogues (Sjöblom
359		and Tham, 2009).
360		
361	Availa	bility to natural and anthropogenic analogues for the waste forms listed above can
362	be fou	nd in Table 2.
363		

364 Table 2.

390 4.6 Landfilling and contaminated soil

391	No case has been found in Sweden in which landfill covers constructed in accordance
392	with modern legislation have had to be remediated. This situation is expected since all
393	such installations are quite new, and since defects might be difficult to identify.

394

395 However, Sweden as many other countries, has a considerable legacy in terms of 396 contaminated sites that need remediation. The Swedish Environmental Protection 397 Agency (EPA) is responsible for the financing of such remediation that refers to 398 pollution that has occurred before the year 1969. Around 50 M€are paid each year for 399 such purposes. A literature search was conducted in order to find out if the experience 400 here was similar to that in the nuclear area, but no comprehensive reporting was found. 401 This is hardly surprising in view of the fact that the Swedish National Audit Office, see 402 (Riksrevisionen, 2011), found no reporting with comparison between predicted and 403 incurred costs for the remediation projects. 404

International sources (Fogleman, 2005), see Chapter 15, unveil that in 1979, US EPA
estimated that remediation of sites posing a significant risk to health and environment
would cost around 6 G US \$. Today, according to the same source, some estimates
exceed 1 T US \$.

409

410 The Swedish EPA has, however, commissioned a study (Carlsson, 2004) with the 411 purpose of facilitating estimation of costs for covering landfills. Such estimates are 412 needed in order for appropriate levels of securities to be decided, c. f. Section 3.3. The 413 Carlsson report refrains from making any prognoses for costs in the long term on the 414 grounds that it is too difficult.

415

416 It appears in (Carlsson, 2004) that many companies in Sweden do not declare any

417 environmental liabilities in spite of the fact that they may be obligated by law.

418 Curiously, those who do declare use taxed assets. The reason for this, according to 419 (Carlsson, 2004), is fear for the tax authorities. This practice is surprising in view of the 420 fact that there is no support for it in the tax legislation. The issue was dealt with by the 421 Swedish Government already in 1977 when it concluded in a proposition that money set 422 aside to cover environmental liabilities should not generate taxation. (Lindskog and 423 Sjöblom 2008; Söderberg 2005) The proposition became law during the subsequent 424 year, and still today there is no taxation in our system for covering nuclear liabilities 425 using segregated funds. Another possible reason for the setting aside of taxed assets

- 426 may be that no infringement is made to the bonuses of the managements.
- 427

428 4.7 End of license versus end of responsibilities

429 It was mentioned in Section 4.1 that the environmental liability is a collective

430 responsibility. This means that the legal system is free to sue anyone involved (e. g.

431 operator or owner) for all or part of the liability. It might therefore be tempting to

432 conclude that the requirements on early planning are moderate.

433

434 Lessons learned tell a different story as is further described in (Lindskog and Sjöblom,
435 2011). A glance at the list of the enterprises on the stock market today and a couple of
436 decades ago clearly indicates that there might not be anyone around to sue. Early

437 planning is also required for other purposes, not least for the assurance of adequate

438 439 funding.

440 It is important to realise that end of licence is not the same as end of responsibilities.

441 End of license can take place as a result of licence expiration, decision of the owner /

442 operator, or as a result of Authority action when license conditions have not been met.

443 End of responsibility may be decided by the competent Authority when all the

444 environmental liabilities have been dealt with appropriately and in full.

445

- 446 **5. Uranium and uranium containing waste**
- 447

448 5.1 Chemical toxicity and radio-toxicity

449 Uranium containing waste has been generated in the form of tailings from uranium 450 mining and beneficiation, and from use of munitions that contain uranium. Uranium and 451 uranium compounds may be harmful to man through their chemical toxicity as well as 452 through the radio-toxicity of uranium together with that of its progenies (daughter radio-453 nuclides). Limits for exposure of soluble uranium compounds may be based on 454 chemical toxicity, and those for insoluble compounds on radio-toxicity (Lewis, 1996). 455 Chemical effects of uranium and uranium-containing compounds include kidney 456 damage, which may not be reversible.

457

The legislation in Sweden on classification of waste into hazardous and non-hazardous
waste is at the time of writing (December 2011) still based on the national legislation

460 under the European Union Dangerous Substances Directive (DSD) and Dangerous

461 Preparations Directive (DSD). Here, the oxides UO_2 , U_3O_8 and UO_3 all have the risk

462 phrases R 26/28 (very toxic to inhalation and if swallowed). This implies that these

463 compounds, together with equivalent other forms, may occur at most at a level of 0.1 %,

464 or else the waste must be regarded as hazardous (Sjöblom et al., 2005, 2006; Sjöblom

and Noläng, 2011, and references therein). In addition, the compounds have the risk

466 phrases R33 (danger of cumulative effects) and R 51/53 (toxic to aquatic organisms,

467 may cause long-term adverse effects in the aquatic environment).

469	It can be expected that the classification of waste will soon instead be based on the new
470	European Union regulation on labelling, CLP. Under CLP, the same oxides all have the
471	hazard statements H300, H330, H373 and H411 (which have about the same meaning as
472	the risk phrases above). It is not to be expected that the change will lead to any less
473	strict classification of waste.
474	
475	Natural uranium comprises the isotopes U-234, U-235 and U-238 which have
476	abundances of 0.005, 0.720 and 99.274 %, respectively. The half-life of U-235 is 0,70 \cdot
477	10^9 years, and that of U-238 is $4.47 \cdot 10^9$ years. U-235 is the only naturally fissile
478	isotope, and consequently, natural uranium is enriched in U-235 before it is used in our
479	modern reactors utilising fission by means of thermal neutrons. Depleted uranium, low
480	in U-235, is generated as a residue. The high density of 18950 kg/m ^{3} makes it attractive
481	for use in munitions.
482	
483	There are three naturally occurring decay series:
484	• Thorium series, starting with Th-232,
485	• Uranium series, starting with U-238, and
486	• Actinium series, starting with U-235
487	
488	The actinium series is of little significance to health and environment in relation to that
489	of the uranium series and is therefore not dealt with further in the following. The
490	thorium series may contribute, and thorium frequently occurs in nature together with
491	uranium. It is, however, generally less mobile. The thorium series is not dealt with
492	further on the grounds of brevity and simplicity of the present paper. The long-term
493	features of the U-238 series are shown in Table 3.

495 Table 3.

496

497	At equilibrium between the daughters, there is the same rate of the decays from each of
498	the radio-nuclides involved (except for cases with alternative paths). Thus, the radio-
499	nuclides in the tables, as well as the intermediates between them in the series, should
500	contribute equally in terms of number of decays per second. But there are other
501	important differences, such as type of radiation, energy involved and type of organ in a
502	human that becomes irradiated. Some of these aspects are dealt with in practice by
503	means of so-called dose factors. Moreover, the chemistry may vary considerably
504	between mother and daughter.
505	
506	5.2 Uranium mill tailings
507	An individual in a critical group living in the vicinity of uranium mine tailings receive a
508	dose that depends on the half-lives of the nuclides in the decay chains, the chemical
509	properties of the radio-nuclides involved, the character and energy of the radiation, the
510	transport, and the form of uptake. In many or even all cases, it is concluded that the
511	mother U-238 makes only a minor contribution to the total dose, and e.g. (Nair et al.,
512	2010) conclude in one case that Rn-222, Po-210, Pb-210 and Ra-226 give rise to no less
513	than 99,75 % of the total dose.
514	
515	Estimation is treacherous. Alpha decays are associated with recoil effects implying that
516	the decaying atom is thrown away from its position in its crystal structure and put e. g.

517 in the pore water where it may end up in as a solute.

518

519 Uranium ore is frequently associated with reduced sulphur, typically in the form of520 pyrites. Pyrites exposed to air may oxidise to form sulphuric acid, which may give rise

525 All pyrite-containing tailings do not form acid drainage, and there are ways to prevent 526 such developments. The requirement is that the rate of neutralisation must exceed that 527 of oxidation of sulphur. Limestone is known to be very reactive in this regard. 528 Consequently, addition of pH-buffering material in combination with covering or 529 flooding to prevent oxidation constitute efficient remediation against acid mine 530 drainage. See (Sjöblom and Noläng, 2011; Blowes, et al., 2005) and references therein. 531 532 It has been reported (Sjöblom et al., 1987) that strong complexing agents like gluconic 533 acid can stabilize uranium in a dissolved form, and that even dilute chemistries 534 containing this agent may dissolve uranium oxide fuel pellets in a couple of hours. It has 535 been shown more recently that complexing agents with similar properties may be 536 formed from organic matter by microbial action (Kalinowski et al., 2004; Edberg et al., 537 2010). 538 539 Microbes might influence mine tailings also in the absence of oxygen from the 540 atmosphere since iron-III can be utilized as an oxidant (Landa et al., 1991). It should be 541 noted, however, that microbial action typically requires inoculation and incubation, and 542 that growth of microorganisms may be slow and their activity moderate under strongly 543 reducing conditions.

544

For most radio-nuclides and transport situations, it can be assumed that transport takesplace only for the radio-nuclides that are relative long-lived. There is an important

547	exception, however	. Radium-226 decays	to radon-222	which has a	half-life of only
• • •					

548 3.825 days (Choppin et al., 2002). Radon is a noble gas and therefore associates itself

- 549 with the atmosphere. If the gas phase in some tailings move, so will the radon until it
- 550 decays, after which the radon daughters will transfer to any solid available.
- 551
- 552 These characteristics imply that uranium mill tailings may need not only protection with
- regard to percolating water, but also that transport of oxygen into the waste and of radonaway from the waste may have to be hindered.
- 555

556 5.3 The Ranstad uranium mining and beneficiation facility

557 The Ranstad uranium mining and beneficiation facility was in full operation during

558 1965-1969. A total of 215 tonnes of uranium were produced from leaching of alum

shale with sulphuric acid and subsequent liquid-liquid extraction. The ore contained on

the average only 0.03 % uranium and consequently a million cubic metres of tailings

561 were generated. It has been estimated that the residues contain about 100 tonnes of

- uranium and $5 \cdot 10^{12}$ Bq of radium-226. They cover an area of 25 hectares.(Sundblad,
- 563 1998)

564

572 0.3 metres clay-moraine mixture, 0.2 metres of crushed limestone, 1.2 metres of

573 moraine, and 0.2 metres of a soil-moraine mixture (Hultgren and Olsson, 1993;

574 Sundblad, 1998). The tests were carried out on a mixture of moraine and bentonite clay,

575 giving rise to 0.3-4.4 % of the precipitation percolating through the seal. The actual

576 installations were, however, made using a local clay and the resulting rate of percolation

577 became 10-15 % of the precipitation.(Sundblad, 1998) Assuming an annual rainfall of

578 700 millimetres, this corresponds to 70-105 litres per square metre and year, thus

579 exceeding the present limits for hazardous and non-hazardous waste which are 5 and 50

580 litres per square metre and year, respectively.

581

582 It appears from (Sundblad, 1998) as if although that pilot scale tests included mixing of

the tailings with limestone, this was not done for the main operation. Allard (Allard et

al., 1991) reports that the calcium content in alum shale is only 0.9 % while that of

sulphur is 7.0 %. It thus appears that the dimensioning hardly includes long-term

586 buffering of the acid generated during the (at least initially) slow oxidation of the pyrite.

587

588 Some of the international experiences can be found in (Rofer and Kaasik, 1998; IAEA,

589 2004a, 2004b; Franklin and Fernandes, 2011).

590

591 5.4 Depleted uranium from munitions

The prerequisites are somewhat different for the case of depleted uranium (containing almost exclusively uranium-238). As is apparent from Table 3, hundreds of thousands of years will pass before appreciable amounts of radium have formed, and associated radon is being generated. This length of time is sufficient in order for the soil at the surface to either have been removed by wind and rain or have been covered by substantial layers of deposited soil.

599	The issue is thus largely limited to that of the chemical and radiological toxicity of
600	uranium and with time also the less mobile thorium (see Table 3).

602	There are also further issues to consider. Uranium metal is pyrophoric, and its use in
603	munitions imply diminution into very fine particles. Perhaps the comparison is overly
604	cautious, but the experience from the Tjernobyl accident is that the fine particles in the
605	fallout travelled through the soil together with the water from the rain and penetrated in
606	a short time to a depth of one or more decimetres. After some decades, transport of
607	cesium-137 in mineral soil takes place at a rate of only about one millimetre per year
608	(Forsberg, 1999).
609	
610	Thus, fine particles from the use of uranium containing munitions may blow away with
611	the wind for some distance and also penetrate into soil in the presence of rain.
612	
613	6 Conclusions and final remarks
614	
615	The main conclusion are as follows.
616	• Awareness comes in trends. Actors in the area of landfilling and surface disposal
617	need to foresee what may be reasonable bases for future trends.
618	• Long-term effects do not usually evidence themselves in the short-term, but have
619	to be searched for in order to be found and identified sufficiently early.
620	• Timely action is essential, since "waste archaeology" and other unplanned
621	remedial actions are usually much more costly than doing things right from the
622	beginning.
623	• Identification of issues of interest and significance requires relatively detailed
624	studies already at early stages.

625	•	The fundamental difficulties of long-term predictions and the associated high
626		value of comprehensive studies of anthropogenic and natural analogues should
627		be fully realized.
628	•	BAT may not be enough. There is also a requirement on sufficient knowledge.
629	•	Lessons learned from completed projects in related areas (such as nuclear waste
630		and decommissioning) can provide valuable input to the planning
631	•	Frequently, the requirements on correct declaration of the financial situation are
632		harsher than the technical ones with regard to detailed and early planning.
633	•	In many cases, it should be the need for financial planning that determines the
634		timing of the technical planning.
635	•	Long-term environmental liabilities are debts that we owe to future generations.
636		It is essential that such liabilities be correctly balanced against financial assets
637		which can be used at the time when they are needed. Such assets do not
638		represent any income and should consequently not be taxed.
639	•	End of responsibilities takes place when all obligations have been fulfilled. It is
640		entirely different from end of license.
641	•	Uranium containing waste has chemical toxicity as well as radio-toxicity, both
642		of which call for long-term containment.
643	•	For tailings from mining and beneficiation, uranium-238 needs to be considered
644		together with all of its daughters (including the noble gas radon-222).
645	•	For depleted uranium is should be sufficient to consider uranium and thorium.
646	•	The combination of cover and waste form should provide the long-term
647		containment required.
648		

649 Acknowledgements

650 This work has been financed by Tekedo AB in gratitude for financing of previous and

651	underlying work by the Swedish Radiation Safety Authority / the Swedish Nuclear
652	Power Inspectorate, the Swedish Waste Management, the Thermal Engineering
653	Research Association, Ångpanneföreningen's Foundation for Research and
654	Development, and others. The authors wish to thank Ångpanneföreningen's Foundation
655	for Research and Development for financing "open publication" of this article
656	
657	References
658	
659	Allard, B., Arsenie, I., Håkansson, K., Karlsson, S., Ahlberg, AC., Lundgren, T.,
660	Collin, M., Rasmuson, A. and Strandell, E., 1991. Effects of weathering on metal
661	releases from an engineered deposit for alum shale leaching residues. Water, air and soil
662	pollution, 57-58, pp. 431-440.
663	
664	ASTM, 2007a. Standard Guide for Disclosure of Environmental Liabilities. ASTM
665	Standard E 2173 – 07, April 2007.
666	
667	ASTM, 2007b. Prediction of the long-term behavior of materials, including waste
668	forms, used in engineered barrier systems (EBS) for geological disposal of high-level
669	radioactive waste, ASTM Standard CI 174-07, June 2007.
670	
671	Arrhenius, S., 1919. Kemien och det moderna livet. Hugo Gebers Förlag, Stockholm.
672	German translation: Die Chemie und das moderne Leben. Autoris. deutsche Ausgabe
673	von B. Finkelstein. Lpz., Akadem. Vlgsanst., 1922. English translation: Chemistry in
674	Modern Life. Translated from the Swedish and revised by Clifford Shattuck Leonard,
675	New York, D. van Nostrand Co., 1925.
676	

677	Blowes,	D.	W.,	Ptacek,	С.	J. and	Jambor,	J. L. a	and W	eisner,	C.	G., 2	2005.	The
-----	---------	----	-----	---------	----	--------	---------	---------	-------	---------	----	-------	-------	-----

678 geochemistry of acid mine drainage. In Lollar, B. S., editor. Environmental

679 geochemistry. Treatise on geochemistry, Volume 9. Elsevier.

680

- 681 Brundin, H., Kihl, A., Lagerkvist, A., Pusch, R., Sjöblom, R. and Tham G., 2001.
- 682 Långtidsegenskaper hos tätskikt innehållande bentonit. (Long-term properties of seals
- 683 containing bentonite. In Swedish). Avfall Sverige Swedish Waste Management, RVF
- 684 Rapport 01:12.

685

- Bruno, J., Duroa, L., and Grive, M., 2002. The applicability and limitations of
- thermodynamic geochemical models to simulate trace element behaviour in natural
- waters.Lessons learned from natural analogue studies. Chemical Geology, 190, pp 371-393.
- 690
- Brännvall, E., 2010. Accelerate ageing of refuse-derived-fuel (RDF) fly ashes.
- 692 Licentiate thesis. Luleå University of Technology.
- 693
- 694 Carlsson, B., 2004. Ekonomisk säkerhet vid deponering. (Economic security for
- landfilling, in Swedish). Envipro Miljöteknik AB, on commission by the Swedish EPA.
- 697 Chapman, N. A. and McKinley, I. G., 1987. The geological disposal of nuclear waste.698 John Wiley & Sons.

699

- 700 Choppin, G. R., Liljenzin J-O, and Rydberg, J., 2002. Radiochemistry and nuclear
- 701 chemistry. Butterworth Heinemann.

703	Dverstorn R	Strömberg 1	R and Simic	F 2011	Licensing	review of	snent nuclear
105	Diversion p, b.	, submoning, I	D. and Sinne,	, Ľ., 2011.	LICENSING	IEVIEW UI	a spent nuclear

- fuel repository in Sweden. 13th International High-level Radioactive Waste
- 705 Management Conference, Albuquerque, New Mexico, United States, April 10-14, 2011.

706

- 707 EU Directive 1999/31/EC on the landfill of waste.
- 708
- 709 EU Directive 2008/98/EC on waste.
- 710
- 711 Flyhammar, P., 2011. One decade of dramatic changes of the Swedish management of
- 712 household waste. Sardinia 2011, Thirteenth International Waste Management and
- 713 Landfill Symposium, 3 7 October 2011, S. Margherita di Pula (Cagliari), Sardinia,

714 Italy.

715

716 Fogleman, V., 2005. Environmental liabilities and insurance in England and the United

717 States. Witherby & Co Ltd, London. ISBN 1-85609-303-4.

- 718
- 719 Franklin, M. R. and Fernandes, H. M., 2011. Identifying and overcoming the constraints
- that prevent the full implementation of decommissioning and remediation programs in

721 uranium mining sites. Journal of Environmental Radioactivity, in press.

722

Edberg, F., Kalinowski, B. E., Holmström, J. M. and Holm, K., 2010. Mobilization of

- 724 metals fromuranium mine waste: the role of pyoverdines produced by *Pseudomonas*
- 725 *fluorescens*. Geobiology, 8, pp. 278-292.
- 726

Forsberg, S., 1999. Behaviour of ¹³⁷Cs and ⁹⁰Sr in agricultural soils. Doctoral thesis.

The Swedish University of Agricultural Sciences, Agraris 212, 1999.

730	Hultgren, Å. and Olsson, G., 1993. Uranium recovery in Sweden, history and
731	perspective. SKB Arbetsrapport 93-42. Swedish Nuclear Fuel and Waste Management
732	Company.
733	
734	IAEA, 2004a. Environmental contamination from uranium production facilities and
735	their remediation. Proceedings of an international workshop, Lisbon, 11-13 February,
736	2004.
737	
738	IAEA, 2004b. The long-term stabilization of uranium mill tailings. Final report of a co-
739	ordinated research project. IAEA-TECDOC-1403.
740	
741	IASB, 2010. International Financial Reporting Standards and International Accounting
742	Standards (IFRS/IAS). International Accounting Standards Board.
743	
744	Kalinowski, B. E., Oskarsson, A., Albinsson, Y., Arlinger, A., Ödegaard-Jensen, A.,
745	Andlid, T. and Pedersen, K., 2004. Microbial leaching of uranium and other trace
746	elements from shale mine tailings at Ranstad. Geoderma 122, pp 177-194.
747	
748	Landa, E. R., Phillips, E. J. P. and Lovley, D. R., 1991. Release of ²²⁶ Ra from uranium
749	mill tailings by microbial Fe(III) reduction. Applied Geochemistry, Vol. 6, pp. 647-652.
750	
751	Lewis, R. J. Sr., 1996 Sax's dangerous properties of industrial materials, 9th edition.
752	Van Nostrand Reinhold.
753	
754	Lindskog, S., and Sjöblom, R., 2008. Regulation evolution in Sweden with emphasis on

	50
755	financial aspects of decommissioning. Decommissioning Challenges: an Industrial
756	Reality? Sept. 28 to Oct.2, 2008 – Avignon, France.
757	
758	Lindskog, S. and Sjöblom, R., 2009. Radiological, technical and financial planning for
759	decommissioning of small nuclear facilities in Sweden. Proceedings of the 12th
760	International Conference on Environmental Remediation and Radioactive Waste
761	Management, ICEM 2009, October 11-15, 2009, Liverpool, UK.
762	
763	Lindskog, S. and Sjöblom, R., 2011. Division of nuclear liabilities between different
764	license holders and owners. Proceedings of the 13th International Conference on
765	Environmental Remediation and Radioactive Waste Management, ICEM 20011,
766	September 25-29, 2011, Reims, France.
767	
768	Liu, J., Yu, JW. and Neretnieks, I., 1996. Transport modelling in the natural analogue
769	study of the Cigar Lake uranium deposit (Saskatchewan, Canada). Journal of
770	Contaminant Hydrology, 21, pp 19-34.
771	
772	Meer, S. L. and Benson, C. H., 2007. Hydraulic Conductivity of Geosynthetic Clay
773	Liners Exhumed from Landfill Final Covers. Journal of geotechnical and
774	geoenvironmental engineering, May, 550-563.
775	
776	Nair R. N., Sunny, F. and Manikandan, S. T., 2010. Modelling of decay chain transport
777	in groundwater from uranium tailings ponds. Applied mathematical modelling 34, pp.
778	2300-2311.
779	
780	Poinssot, C. and Gin, S., 2012. Long-term behavior science: The cornerstone approach

781 for reliably assessing the long-term performance of nuclear waste. Journal of Nuclear

31

782 Materials, 420, pp 182-192.

- Rihm, T., Svedberg, B., Eriksson, M. and Rogbeck, Y., 2009. Alternativa
- 785 konstruktionsmaterial på deponier, vägledning. (Alternative construction materials for
- 786 landfills, guidance). Avfall Sverige, Report U2009:08.
- 787
- 788 Riksrevisionen, 2011. Revisionsrapport 2011-01-18, Dnr 32-2010-0664. (Revision
- report regarding the Swedish Environmental Protection Agency, in Swedish).
- 790
- 791 Rofer, C. K. and Kaasik, T., editors, 1998. Turning a problem into a resource:
- 792 Remediation and waste management at the Sillamäe site, Estonia. NATO Science
- 793 Series. 1. Disarmament Technologies Vol 28. Proceedings of the NATO Advanced
- 794 Research Workshop on Turning a problem into a resource: Remediation and waste
- management at the Sillamäe site, Estonia, 5-9 October, 1998.
- 796
- 797 Sjöblom, R., 1975. Hydrogen Bond Studies 112. Molecular reorientations in some
- 798 hydrogen bonded solids. Acta Universitatis Upsaliensis, Abstracts of Uppsala
- 799 dissertations from the Faculty of Science 350.
- 800
- 801 Sjöblom, R., Olson, P. M., Parke, J. M. and Schneidmiller, D., 1987. Post-accident
- 802 chemical decontamination method development, Final Report. EPRI Research Project
- 803 RP 2012-8, EPRI Report number EPRI-NP-4999, January 1987 (Concerns the primary
- system in the reactor Three Mile Island 2).
- 805
- 806 Sjöblom, R., Tham, G., Haglund, J-E. and Sjöö, C., 2005. Environmental qualification

2	0
3	2

Torbay, UK.

807	of ash from	wood-based	recycled	fuels for	utilization	in covers	for landfills.	Kalmar
			2					

808 ECO-TECH '05 and The Second Baltic Symposium on Environmental Chemistry.

809 Kalmar, Sweden November 28-29.

810

- 811 Sjöblom, R., Tham, G., Haglund, J-E. and Ribbing, C., 2006. Classification of waste
- 812 according to the European Union Directive 91/689/EEC on hazardous waste from a
- 813 Swedish application perspective. CIWM Conference 12th 16th June 2006, Paignton,

815

814

- 816 Sjöblom, R., 2011. Lämplig metodik för grundläggande karakterisering av aska för
- 817 acceptans på deponi. (Appropriate methodology for basic characterisation of ash for

818 acceptance for landfilling). Avfall Sverige, Rapport U2011:22.

819

820 Sjöblom, R. and Noläng, B., 2011. Betydelsen av fast löslighet i järn(hydr)oxider för

821 fastläggning av potentiellt miljöstörande ämnen i askor. (The significance of solid

solution of iron (hydr)oxides for stabilisation of elements in ash which are potentially

harmful to health and environment. Värmeforsk, Report 1198, November 2011.

824

825 Sjöblom, R., Ecke, H. and Brännvall, E., 2011a. Long-term stability of vitrified waste in

826 natural environments. Submitted to International Journal of Sustainable Development &

827 Planning.

828

829 Sjöblom, R., Lindskog, S. and Andreas, L., 2011b. Lessons learned from nuclear

830 decommissioning and waste management relevant to end of responsibilities for landfills.

- 831 Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium, 3
- 832 7 October 2011, S. Margherita di Pula (Cagliari), Sardinia, Italy.

834	Sjöblom, R. and Tham, G., 2009. Anthropogenic and natural analogues for the
835	development over time of mixtures of wood-based ash and activated sewage sludge.
836	Sardinia 2009, 12th international waste management and landfill symposium.
837	Margherita di Pula, Cagliari, Sardinia, 5-9 October, 2009.
838	
839	Smellie, J. A., Karlsson, F. and Russell Alexander, W. A., 1997. Natural analogue
840	studies: present status and performance assessment implications. Journal of
841	Contaminant Hydrology, 26, pp 3-17.
842	
843	Smellie, J. A., Karlsson, F., 1999. The use of natural analogues to assess radionuclide
844	transport. Engineering Geology, 52, pp 193-220.
845	
846	Strandell, E., editor, 1998. Uran ur skiffer, Ranstadverket. (Uranium from shale, the
847	Ranstad plant, in Swedish). Printing financed by AB SVAFO.
848	
849	Sundblad, B., 1998. Remediation of the former uranium mine at Ranstad. In Rofer, C.
850	K. and Kaasik, T., editors, 1998. NATO Science Series. 1. Disarmament Technologies -
851	Vol 28. Proceedings of the NATO Advanced Research Workshop on Turning a problem
852	into a resource: Remediation and waste management at the Sillamäe site, Estonia, 5-9
853	October, 1998.
854	
855	Swedish Government, 1976. Spent nuclear fuel and radioactive waste. A summary
856	report given by the Swedish Government committee on radioactive waste. AKA public
857	investigation. (English summary of AKA Reports I-III) Department of Industry, SOU

858 1976:32. ISBN 91-38-02973-1.

34

860	Söderberg, O., 2005. In the shadow of the nuclear power debate around 1980 – thoughts
861	on the birth of the finance system of today. (In Swedish). In Nuclear waste – costs and
862	financing (Swedish title: Kärnavfall – kostnader och finansiering). Swedish National
863	Council for Nuclear Waste. SOU 2005:83. ISBN 91-38-22439-9.
864	
865	Tham, G. and Andreas, L., 2008. Utvärdering av fullskaleanvändning av askor och
866	andra restprodukter vid sluttäckning av Tveta Återvinningsanläggning (Results from a
867	full scale application of ashes and other residuals in the final cover construction of the

- 868 Tveta landfill). Värmeforsk Report 1064.
- 869

870 Table 1. Examples of nuclear waste forms and barrier materials used together with the

871 associated types of analogues.

Type of material	Natural analogue?	Anthropogenic analogue?
Uranium oxide fuel	yes	No
Waste glass	Yes	Yes
Iron	Yes	Yes
copper	Yes	Yes
bentonite	Yes	No
Crystalline and other rock	Yes	No

- 873 Table 2. Examples of materials for seals in covers for landfills the associated types of
- analogues.

Type of material	Natural analogue?	Anthropogenic analogue?
Geomembranes	No. Geomembranes have been decades and no analogues are	en used for only a few

Geo clay liners	Natural analogues exist for	No	
	bentonite clay. Geo clay		
	liners depend for their		
	function (shear resistance)		
	also on polymers for which		
	there are no analogues.		
Natural clays	Yes	No	
Ashes from combustion of	Yes. Natural cements and	Yes. Roman cement and	
wood based fuels	other natural high pH	mortar	
	occurrences		
Mixtures of ash and	Yes. Sea floors. Does not	Yes. Historic waste heaps.	
activated sewage sludge	support claim on longevity,	Does not support claims on	
	see main text.	longevity, see main text.	

87	5
----	---

- Table 3. The main long-term features of the uranium-238 series, after (Choppin et al.,
- 877 2002).

Mother nuclide	Daughter nuclide	Decays	Effective half-life,
			years
U-238	U-234	$\alpha + 2\beta$	$4.5 \cdot 10^{9}$
U-234	Th-230	α	$2.5 \cdot 10^5$
Th-230	Ra-226	α	$7.5 \cdot 10^4$
Ra-226	Pb-210	$4\alpha + 2\beta$	$1.6 \cdot 10^{3}$
Pb-210	Pb-206	$2\beta + \alpha$	22